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Motivation

Why Retrieval-based LMs?

New dimension in data Can grow & update w/o : . ,
use & better at long-tail addit%onal training - Provide data attribution

& List 4 important papers authored by Geoffrey Hinton

@ Geoffrey Hinton is a renowned computer scientist ... Here are four important

papers authored by him:
ChatGPT

1. "Learning Internal Representations by Error Propagation” (with D. E. Rumelhart (
and R. J. Williams) - This paper, published in 1986, ..

2. "Deep Boltzmann Machines” (with R. Salakhutdinov) - Published in 2009, .. l

3. "Deep Learning” (with Y. Bengio and A. Courville) - Published as a book in 2016, ... x

4. "Attention Is All You Need" (with V. Vaswani, N. Shazeer, et al.) - Published in 201 7,x
this paper introduced the Transformer model, ...
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Retrieval Augmentation - Inference
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(1) Retrieve stage
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How to use multiple text blocks? 1) Concatenation
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(2) Read stage

How to use multiple text blocks? 2) Ensembling
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(2) Read stage

How to use multiple text blocks? 3) Reranking

Retrieval results (ranked)
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saw the mouth move and
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Ram et al. 2023. “In-Context Retrieval-Augmented Language Models” 24
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==
Voldemort’s want just as a ‘ Harry felt Greenback collapse against him ... a jet of

jet of red light ... —

l

Voldemort cried, “Avada * Voldemort cried, “Avada
Kedavral” A jet of green > Kedavra!” A jet of green ‘ LM
light issued ...from ... light issued ...from ...

“The Boy Who Lived.” He *
saw the mouth move and

green
a flash of green ... red
light

: water

s Not bounded by the length limit enemy

liquid

. Increase the inference cost

Ram et al. 2023. “In-Context Retrieval-Augmented Language Models”
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Retrieval Augmentation - Inference

Key results

Ram et al. 2023. “In-Context Retrieval-Augmented Language Models”
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Perplexity: The lower the better

18.0
17.4
13.0
11.7
8.0
3.0

OPT-125M OPT-350M

Retrieval Augmentation - Inference

Key results

® No Retrieval ® In-Context RALM (BM25)

OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B OPT-66B

Varying sizes of LMs

Ram et al. 2023. “In-Context Retrieval-Augmented Language Models”
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Key results

Perplexity: The lower the better ® No Retrieval ® In-Context RALM (BM25)

18.0

IR

13.0

8.0

3.0
OPT-125M

Retrieval Augmentation - Inference

11.7
10.4
8.7 8 4
7.9 :

OPT-350M OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B OPT-66B

Varying sizes of LMs

Retrieval helps over all sizes of LMs

Ram et al. 2023. “In-Context Retrieval-Augmented Language Models”
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Retrieval augmentation: Overview

® |[nference
e Step |: Retrieve
e Step 2: Read (Generate)

e Optionally, with multiple passages: Concatenation, Ensembling, Reranking

Retrieval Augmentation 27



Retrieval augmentation: Overview

® |nference
o Step |: Retrieve
o Step 2: Read (Generate)

o Optionally, with multiple passages: Concatenation,

® Training

Retrieval Augmentation - Training

-nsembling, Reranking

28



Retrieval Model

trained in isolation

trained in isolation

Retrieval Augmentation - Training

How to train it?
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Retrieval Model

trained in isolation

4

How to train it?

trained in isolation

Retrieval Augmentation - Training

GP1-2, GPI-3, LLAMA, ...
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Retrieval Model

trained in isolation

How to train it?

0
-

DPR, Contriever, GTR, ...

trained in isolation

Retrieval Augmentation - Training

GP1-2, GPI-3, LLAMA, ...
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Independent training

Retrieval Model

trained in isolation

trained in isolation

Retrieval Augmentation - Training

How to train it?
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Independent training

Retrieval Model

trained in isolation

trained in isolation

Retrieval Augmentation - Training

How to train it?

Joint training

Retrieval Model

trained jointly
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Independent training

Retrieval Model

trained in isolation

trained in isolation

Retrieval Augmentation - Training

How to train it?

Joint training

Retrieval Model

trained jointly

Sequential training

trained in isolation

Retrieval Model

__Retrieval Model _
¢
_ LM

LM

trained conditionally
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Independent training

Retrieval Model

trained in isolation

How to train it?

Joint training

trained in isolation

Retrieval Augmentation - Training

Retrieval Model

trained jointly

Sequential training

trained in isolation

Retrieval Model
y

trained conditionally

or

trained conditionally

Retrieval Model

T

trained in isolation
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Independent training

Retrieval Model

trained in isolation

How to train it?

Joint training
(Skipping details)

trained in isolation

Retrieval Augmentation - Training

Retrieval Model

trained jointly

Sequential training

trained in isolation

Retrieval Model

v

trained conditionally

or

trained conditionally

Retrieval Model

T

trained in isolation

30



Sequential training: freeze LM, tune retrieval

Retrieval Augmentation - Training Shi et al. 20238, “REPLUG: Retrieval-Augmented Black-Box Language Models”
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Sequential training: freeze LM, tune retrieval

Frozen green
red
light

LM water
enemy
liquid

Harry felt Greenback collapse against him ... on the floor as a jet of ——

Retrieval Augmentation - Training Shi et al. 20238, “REPLUG: Retrieval-Augmented Black-Box Language Models”
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Sequential training: freeze LM, tune retrieval

Harry felt Greenback collapse against him ... on the floor as a jet of Ground truth token: green

Frozen

LM

LM

Retrieval Augmentation - Training Shi et al. 20238, “REPLUG: Retrieval-Augmented Black-Box Language Models”
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Sequential training: freeze LM, tune retrieval

Harry felt Greenback collapse against him ... on the floor as a jet of Ground truth token: green

Retrieval Model

Retrieval Augmentation

Frozen
Voldemort was ready. As Harry
shouted, "Expelliarmus!”

\/oldemort cried, Avada LM

Kedavral” A jet of green light

LM

Voldemort's want just as a jet
of red light ...

- Training Shi et al, 2023, "REPLUG: Retrieval-Augmented Black-Box Language Models”
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Sequential training: freeze LM, tune retrieval

Harry felt Greenback collapse against him ... on the floor as a jet of Ground truth token: green

Retrieval Model

Voldemort was ready. As Harry
shouted, "Expelliarmus!”

\/oldemort cried, Avada
Kedavral” A jet of green light

Voldemort's want just as a jet
of red light ...

Retrieval Augmentation - Training Shi et al. 20238, “REPLUG: Retrieval-Augmented Black-Box Language Models”
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Sequential training: freeze LM, tune retrieval

Harry felt Greenback collapse against him ... on the floor as a jet of Ground truth token: green

Retrieval Model

R RN
Y N R \\, N N

TN

Voldemort was ready. As Harry
shouted, ‘Expelliarmus!”

Voldemort cried, Avada
Kedavral” A jet of green light

Voldemort's want just as a jet
of red light ...

Retrieval Augmentation - Training Shi et al. 20238, “REPLUG: Retrieval-Augmented Black-Box Language Models”
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Sequential training: freeze LM, tune retrieval

Harry felt Greenback collapse against him ... on the floor as a jet of Ground truth token: green

Retrieval Model

R RN
Y N R \\, N N

TN

Voldemort was ready. As Harry
shouted, ‘Expelliarmus!”

Voldemort cried, Avada
Kedavral” A jet of green light

Voldemort's want just as a jet
of red light ...

Retrieval Augmentation - Training Shi et al. 20238, “REPLUG: Retrieval-Augmented Black-Box Language Models”
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Sequential training: freeze LM, tune retrieval

Harry felt Greenback collapse against him ... on the floor as a jet of Ground truth token: green

Retrieval Model

R RN
Y N R \\, N N

TN

Voldemort was ready. As Harry
shouted, ‘Expelliarmus!”

Voldemort cried, Avada
Kedavral” A jet of green light

‘ Voldemort's want just as a jet
of red light ...

Retrieval Augmentation - Training Shi et al. 20238, “REPLUG: Retrieval-Augmented Black-Box Language Models”
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Sequential training: freeze LM, tune retrieval

Harry felt Greenback collapse against him ... on the floor as a jet of Ground truth token: green

V210V [eJe -1 Updated
(2

Voldemort was ready. As Harry
shouted, "Expelliarmus!”

\/oldemort cried, Avada
Kedavral” A jet of green light

‘ Voldemort's want just as a jet
of red light ...

Retrieval Augmentation - Training Shi et al. 20238, “REPLUG: Retrieval-Augmented Black-Box Language Models”
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Sequential training: freeze LM, tune retrieval

Harry felt Greenback collapse against him ... on the floor as a jet of Ground truth token: green

V210V [eJe -1 Updated
(2

Voldemort was ready. As Harry
shouted, "Expelliarmus!”

\/oldemort cried, Avada
Kedavral” A jet of green light

‘ Voldemort's want just as a jet
of red light ...

Maximize P(y x) = D | Per(z OPLu(y %.2)
1€EZL

Retrieval Augmentation - Training Shi et al. 20238, “REPLUG: Retrieval-Augmented Black-Box Language Models”



Sequential training: freeze retrieval, tune LM

Retrieval Augmentation - Training Shi et al. 2023. “In-Context Pretraining: Language Modeling Beyond Document Boundaries”

33



Sequential training: freeze retrieval, tune LM

Harry felt Greenback collapse against him ... on the floor as a jet of Ground truth token: green

Retrieval Augmentation - Training Shi et al. 2023. “In-Context Pretraining: Language Modeling Beyond Document Boundaries”
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Sequential training: freeze retrieval, tune LM

Harry felt Greenback collapse against him ... on the floor as a jet of Ground truth token: green

Retrieval Model REf{r<{y

Retrieval Augmentation

Voldemort was ready.As Harry
shouted, "Expelliarmus!”

Voldemort cried,"Avada
Kedavral” A jet of green light

- Training Shi et al. 2023. “In-Context Pretraining: Language Modeling Beyond Document Boundaries”
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Sequential training: freeze retrieval, tune LM

Harry felt Greenback collapse against him ... on the floor as a jet of Ground truth token: green

Retrieval Model RE{Y{)y

Voldemort was ready. As Harry Updated green
shouted, “Expelliarmus!” red
Voldemort cried,"Avada — ‘ - 5 light

Kedavral” A jet of green light water

‘ enemy

Retrieval Augmentation - Training

/qwd

Shi et al. 2023. “In-Context Pretraining: Language Modeling Beyond Document Boundaries”
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Sequential training: freeze retrieval, tune LM

Harry felt Greenback collapse against him ... on the floor as a jet of Ground truth token: green

Retrieval Model RE{Y{)y

Voldemort was ready. As Harry Updated green
shouted, “Expelliarmus!” red
Voldemort cried,"Avada — ‘ —_— light

Kedavral” A jet of green light water
- enemy
/qwd

Updated

Maximize P(y x) = Z Peui(z x

Retrieval Augmentation - Training Shi et al. 2023. “In-Context Pretraining: Language Modeling Beyond Document Boundaries”



Independent training

Retrieval Model

trained in isolation

Summary: Training

Joint training
(Skipping details)

trained in isolation

Retrieval Model

trained jointly

Sequential training

trained in isolation

Retrieval Model

v

trained conditionally

or

trained in isolation

Retrieval Model

T

trained conditionally
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Independent training

Summary: Training

Joint training Sequential training
(Skipping details)

trained in isolation

Retrieval Model

trained in isolation

Retrieval Model

trained in isolation

v
Retrieval Model
trained conditionally

or

trained jointly

trained in isolation

Retrieval Model

Quite difficult, essentially

i SSEltial f
iterative sequential training

trained conditionally

Gus et al. 2020. "REALM: Retrieval-Augmented Language Model Pre-Training”

izcard et al. 2022, "Atlas: Few-shot Learning with Retrieval Augmented Language Models”
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Summary: Training

Independent training Joint training

(Skipping details)

Retrieval Model

trained in isolation .
Retrieval Model

trained jointly

trained in isolation

Good enough if you want Principle way but still
minimal effort open question

Sequential training

trained in isolation

Retrieval Model

v

trained conditionally

or

trained in isolation

Retrieval Model
T

trained conditionally

Good middle ground

36



Retrieval augmentation: Overview

® |[nference
e Step |: Retrieve
e Step Z2: Read (Generate)

o Optionally, with multiple passages: Concatenation, Ensembling, Reranking
® [raining

¢ Independent training, Joint training, Sequential training

Retrieval Augmentation

37



Retrieval augmentation: Overview

® |[nference
e Step |: Retrieve
e Step Z2: Read (Generate)

o Optionally, with multiple passages: Concatenation, Ensembling, Reranking
® [raining
® |[ndependent training, Joint training, Sequential training

e Key results

Retrieval Augmentation
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Retrieval Augmentation

Question Answering

39



Question Answering

80

60

40

EM

20 : :
B Chinchilla (70B)
Ll ATLAS (Few; 11B)

0 ATLAS (Full: 11B)

NQ TriviaQA

Retrieval Augmentation izcard et al. "Atlas: Few-shot Learning with Retrieval Augmented Language Models”
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80

60

40

EM

20

Retrieval Augmentation

NQ

Question Answering

ATLAS largely outperforms 7x larger
LMs in few-shot

B Chinchilla (70B)
Ll ATLAS (Few; 11B)

ATLAS (Full; 11B)
TriviaQA

izcard et al. "Atlas: Few-shot Learning with Retrieval Augmented Language Models”
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80

60

40

EM

20

Retrieval Augmentation

Question Answering

NQ

Full-shot fine-tuning further improves
performance

B Chinchilla (70B)
W ATLAS (Few; 11B)
0 ATLAS (Full; 11B)

TriviaQA

izcard et al. "Atlas: Few-shot Learning with Retrieval Augmented Language Models”
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Question Answering

What is Kathy Saltzman’s occupation?

I
0.8 41 MM unassisted LM I
W retrieval-augmented
> |
©
= |
o 0.4 - l
5 [
<
|
[
0.0 -
10t 102 103 104 10°

Popularity

Mallen et al. 2023. "When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories'
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Question Answering

What is Kathy Saltzman’s occupation?

1
0.8 1 MM unassisted LM I
i retrieval-augmented
> [
S
= [
O 0.4 - l
3 [
<
[
1
0.0 - - -
10t 102 103 104 10°

Popularity

Gains increase as the rarity increases (even over GPT-3!)

Mallen et al. 2023. "When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories'
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Retrieval Augmentation

Reasoning (MMLU)

42



AcCcC.

Retrieval Augmentation

Reasoning (MMLU)

MMLU

Large performance gain
from base LM

! Base LM (CodeX)
I + REPLUG LSR

NQ

Shi et al. 2023, “REPLUG: Retrieval-Augmented Black-Box Language Models”

42



Code generation

TLDR (NL —> bash)

BLEU

B CodeT5
.+ DocPrompting
. CodeX
B + DocPrompting

Retrieval Augmentation /hou et al. 2023. "DocPrompting: Generating Code by Retrieving the Docs’

43



BLEU

Retrieval Augmentation

32

24

16

Code generation

TLDR (NL —> bash)
Large gains over both CodeT5 &

CodeX
B CodeT5
.+ DocPrompting
. CodeX

B + DocPrompting

/hou et al. 2023. "DocPrompting: Generating Code by Retrieving the Docs’

43



Retrieval Augmentation

Can update effectively

izcard et al. "Atlas: Few-shot Learmning with Retrieval Augmented Language Models”

44



13

9.75

6.5

3.25

Retrieval Augmentation

Can update effectively

B Test- 2017 [0 Test - 2020

\
\

T5-Fine-tuned on 2017 data

zcard et al. "Atlas: Few-shot Learning with Retrieval Augmented Language Models”

44



13

9.75

6.5

3.25

Retrieval Augmentation

Can update effectively

B Train 2017, DS 2017

B Test-2017 | Test - 2020 " Train 2017, DS 2020

\ ;

\ 45.75

30.5

15.25

T5-Fine-tuned on 2017 data 5

izcard et al. “Atlas: Few-shot Learning with Retrieval Augmented Language Models”
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13

9.75

6.5

3.25

Retrieval Augmentation

Can update effectively

B Test- 2017 [0 Test - 2020

\

\

T5-Fine-tuned on 2017 data

B Train 2017, DS 2017
. Train 2017, DS 2020

61

45.75

30.7

Swapping test datastore only

5o  gives strong performance

- 1 B

zcard et al. "Atlas: Few-shot Learning with Retrieval Augmented Language Models”
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Retrieval Augmentation

Instruction-tuning

45



Instruction-tuning

| - X Why does my
GPU keep failing with

-----------------------

Retrieval-augmented Instruction Tuning max p; /(| c; o x)
LM

v
El Ba.ckground: I assume that the BGA y: Do not use Y-splitters ot
g chip has damage to the substrate level 601 15 B-oi0 conveceety i
-+ \n\nQ: Why does my GPU keep any of the PCle---
failing with Xid 79 fallen off the bus? A:
X max pyy(ylc, o x)

Background: Microsoft should withdraw

from the hardware market ---\n\n
Question: Why does my GPU keep failing
with Xid 79 fallen off the bus? Answer:

Y : Do not use Y-splitters or

6-pin to 8-pin converters in
any of the PCle:---

Retrieval Augmentation

Lin et al. 2023. RA-DIT: Retrieval-Augmented Dual Instruction Tuning
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Retrieval augmentation: Summary

® |nference

e Step |: Retrieve

® Step Z2: Read (Generate)

o Optionally, with multiple passages: Concatenation, Ensembling, Reranking
® [raining

® |[ndependent training, Joint training, Sequential training
o Key results

o QA, Reasoning, Code generation, etc

e Update effectively

® You can also do instruction tuning

Retrieval Augmentation

46



Retrieval Augmented LMs are already being used!

Chat GPT 7\
Extension Y

B Perplexity h
[lamaindex

Retrieval Augmentation
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Retrieval Augmented LMs are already being used!

@ A O .  Day 2: Explore the history and culture of Toronto at the
Royal Ontario Museum, one of the largest and most
comprehensive museums in North America, featuring

Toronto is a vibrant and diverse city with many attractions o ,
exhibits on art, natural history, world cultures and more

and activities to suit different tastes and preferences. Here

are some suggestions for creating an itinerary for exploring * . Then, hop on a ferry to the Toronto Islands, a group
Toronto over two days: of islands that offer a relaxing escape from the city, with
* Day 1: Start your day with a visit to the CN Tower, the beaches, parks, trails and amusement rides % . You
iconic landmark that offers panoramic views of the city can also rent a bike or kayak to explore the islands at
and beyond " . You can also experience the thrill of your own pace. For dinner, head to Chinatown, one of
palingioiihieitrassioonontiisiEagewalicHiGiwoncis the largest and most vibrant in North America, where you

highest hands-free walk ' . Next, head to the nearby St.
Lawrence Market, one of the world’s best food
markets, where you can sample a variety of cuisines and | hope this helps you plan your trip to Toronto. Have fun! &
local specialties * . After lunch, take a stroll along Queen
West, a trendy neighborhood with eclectic shops,
galleries, cafes and street art ® . In the evening, enjoy a
show at one of the many theaters or comedy clubs in the 1.cntowerca 2. travel.usnews.com 3. bing.com
Entertainment District, or catch a game at the
Scotiabank Arena if you're a sports fan.

can find a variety of Asian cuisines and shops * .

Learn more:

4. rom.on.ca 5. tripadvisor.com

Liu et al. 2023. "Evaluating Verifiability in Generative Search Engines”

Retrieval Augmentation Min et al. 2023. "FActScore: Fine-grained Atomic Evaluation of Factual Precision in Long Form Text Generation'



Retrieval Augmented LMs are already being used!

(L) b Q

Toronto is a vibrant and diverse city with many attractions
and activities to suit different tastes and preferences. Here
are some suggestions for creating an itinerary for exploring
Toronto over two days:

* Day 1: Start your day with a visit to the CN Tower, the
iconic landmark that offers panoramic views of the city
and beyond " . You can also experience the thrill of
walking on the glass floor or the EdgeWalk, the world’s
highest hands-free walk g Next, head to the nearby St.
Lawrence Market, one of the worl
markets, where you can sample a variety of cuisines an
local specialties * . After lunch, take a stroll along Queen
West, a trendy neighborhood with eclectic shops,
galleries, cafes and street art ® . In the evening, enjoy a
show at one of the many theaters or comedy clubs in the
Entertainment District, or catch a game at the
Scotiabank Arena if you're a sports fan.

Retrieval Augmentation

 Day 2: Explore the history and culture of Toronto at the
Royal Ontario Museum, one of the largest and most
comprehensive museums in North America, featuring

exhibits on art, natural history, world cultures and more
4

. Then, hop on a ferry to the Toronto Islands, a group
\slands that offer a relaxing escape from the city, with
beackes, parks, trails and amusement rides > ° . You
can als rent a bike or kayak to explore thg/islands at
your own Race. For dinner, head to Chyiatown, one of
the largest aRd most vibrant in Norty America, where you

Learn more:

1. cntower.ca 2. travel.usnews.com 3. bing.com

4. rom.on.ca 5. tripadvisor.com

Liu et al. 2023. "Evaluating Verifiability in Generative Search Engines”
Min et al. 2023. "FActScore: Fine-grained Atomic Evaluation of Factual Precision in Long Form Text Generation'
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Overview

Why Retrieval-based LMs?

‘ Tell me about Meta Plattorm.

| don’t have any information about a
@ company called Meta Platforms. [t
IS possible that the company is ...

ChatGPT

New Retrieval-based LMs

— T —

... "Avada Kedavral” A jet of green light issued ...

.. move and a flash of green light and .
... just as a jet of red light blasted from Harry's

.. Is operated or driven by a jet of water.

Retrieval Augmentation

X — BEREGEEIN —

1
b

|
L

Open Problems

S\
R @\\“@w%\%@\\,
N AR N
A SRR R N

datastore

TV TR
) @\Q®§ \\\;‘w“

Scaling datastore not just parameters?



New Retrieval-based LMs

® New Methodology | — Designing a new Transformer

® New Methodology 2 — Designing a new Softmax

* New LM Design — Mitigating fairness & legality issues

New Retrieval-based LMs

50



New Retrieval-based LMs

1. How to overcome sequence length limit issue?

2. How to overcome efficiency issue when
retrieving many blocks, frequently?

® New Methodology | — Designing a new Transformer

h

® New Methodology 2 — Designing a new Softmax

® New LM Design — Mitigating fairness & legality 1ssues

New Retrieval-based LMs — new Transformers



New Retrieval-based LMs — new Transformers

RETRO (Borgeaud et al. 2021)

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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RETRO (Borgeaud et al. 2021)

New Transformers layers, designed to read many text blocks, frequently, more efficiently

New Retrieval-based LMs — new Transformers Borgeaud et al. 2021, “Improving language models by retrieving from trillions of tokens”
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RETRO (Borgeaud et al. 2021)

x = World Cup 2022 was the last with 32 teams, before the increase to

New Retrieval-based LMs — new Transformers

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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RETRO (Borgeaud et al. 2021)

x = World Cup 2022 was/the last with 32 teams,/before the increase to

New Retrieval-based LMs — new Transformers

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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RETRO (Borgeaud et al. 2021)

x = World Cup 2022 was/the last with 32 teams,flbefore the increase to

New Retrieval-based LMs — new Transformers

X, | X4

Retrieval

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”

53



RETRO (Borgeaud et al. 2021)

x = World Cup 2022 wasfthe last with 32 teams,fbefore the increase to

New Retrieval-based LMs — new Transformers

Xo * X3

(k text blocks per split)

pi...p}

Retrieval 1 k | M

Model Py---Py FE:

p;...p4

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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RETRO (Borgeaud et al. 2021)

x = World Cup 2022 wasfthe last with 32 teams,fbefore the increase to

Xo * X3

Retrieval
Model

New Retrieval-based LMs — new Transformers

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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RETRO (Borgeaud et al. 2021)

x = World Cup 2022 wasfthe last with 32 teams,fbefore the increase to
X| | X2 | X3

Retrieval
Model

How to incorporate them into Transformers?

New Retrieval-based LMs — new Transformers Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens” 53



New Retrieval-based LMs — new Transformers
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Regular Transformers

. l

Transformers Iolocks

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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New Retrieval-based LMs — new Transformers
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RETRO Transformers

E1 Ez E3

. l

RETRO blocks (xL

Chunked Cross Attention (CCA)

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Chunked Cross Attention

Outputs from the previous layer H

New Retrieval-based LMs — new Transformers

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Chunked Cross Attention

Outputs from the previous layer H

New Retrieval-based LMs — new Transformers

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Chunked Cross Attention

Outputs from the previous layer H

New Retrieval-based LMs — new Transformers

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Chunked Cross Attention

Outputs from the previous layer H

New Retrieval-based LMs — new Transformers

CA(H*, E)

CAH,", E,)

Inputs to the next layer

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Chunked Cross Attention
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Chunked Cross Attention
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Results

Perplexity: The lower the better
Model Retrieval Set #Database tokens #Database keys  Valid Test
Adaptive Inputs (Baevski and Auli, 2019) - - - 17.96 18.65
SpaLM (Yogatama et al., 2021) Wikipedia 3B 3B 17.20 17.60
kNN-LM (Khandelwal et al., 2020) Wikipedia 3B 3B 16.06 16.12
Megatron (Shoeybi et al., 2019) - - - - 10.81
Baseline transformer (ours) - - - 21.53 22.96
kNN-LM (ours) Wikipedia 4B 4B 18.52 19.54
RETRO Wikipedia 4B 0.06B 18.46 18.97
RETRO C4 174B 29B 12.87 10.23
RETRO MassiveText (1%) 18B 0.8B 18.92 20.33
RETRO MassiveText (10%) 179B 4B 13.54 14.95
RETRO MassiveText (100%) 1792B 28B 3.21 3.92

New Retrieval-based LMs — new Transformers

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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New Retrieval-based LMs: Overview

* New Methodology | — Designing a new lransformer

® New attention layers to incorporate more blocks (RETRO)
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Test Context Target
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Test Context Target Representation
T q=f(z)
Obama’s birthplace is ? C.QQ.D

KNN-LM

softmax

Classification

prm(y)

New Retrieval-based LMs
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KNN-LM
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KNN-LM
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KNN-LM

# of vectors = # of tokens in the corpus (>1B)
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KNN-LM
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Which tokens in a datastore are close to the next token?

Which vectors in a datastore are close to the vector we have?
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KNN-LM

Normalization
p(k;) o exp(—d;)

New Retrieval-based LMs

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models'
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KNN-LM

Nonparamatric softmax
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Nonparamatric softmax

Training Contexts Targets || Representations Distances Nearest k Normalization Aggregation
Cl Ui ‘ d; = d(q, k;) p(kj) X CX})(—di) PKNN(Y) = f Ly=v;p(k;)
Obama was senator for | lllinois 4 Hawaii |3 |~ Hawaii|0.7 | % Hawaii | 0.8
Barack is married to | Michelle 100 lllinois (4 ™ lllinois [0.2 74 lllinois | 0.2
Obama was born in | Hawaii 5 | Hawaii |5 —| Hawaii|0.1
Obama is a native of | Hawaii 3
A
Test Context Target Representation

Obama’s birthplace is ?

| @50e

Pan® X o Yo v =yle™*9  Gim(k, x) = — d(Enc(k), Enc(x))
(k,v)ED - o

New Retrieval-based LMs Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models” 74



KNN-LM
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Nonparamatric softmax

Training Contexts Targets || Representations Distances Nearest k Normalization Aggregation
C; Uy ki = f(ci) d; = d(q, k;) p(k;) o< exp(—d;) PKNN(Y) = f ly=v;p(ki)
Obama was senator for | llinois @00® | 4 Hawaii |3 |—> Hawaii|0.7 |—%  Hawaii[0.8
Barack is married to | Michelle @QQ@ - 100 lllinois |4 | lllinois |0.2 74 lllinois | 0.2
Obama was born in | Hawaii @O00® 5 * Hawaii |5 —| Hawaii 0.1 l
Obama is a native of | Hawail @000 > 3 Classification Interpolation
+ PLM (V) p(y)=ApknN(y)+(1—A)pLm(y)
Test Context Target Representation S Oﬁm ax )
_ Hawalii |0.2 Hawaii | 0.6
T q = f(z) e e
— lllinois |0.2 > lllinois | 0.2
Obama’s birthplace is ? @00® >

Pian—imy x) = (1 = DP (v x) + AP N X)

New Retrieval-based LMs Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models” 75



KNN-LM

Nonparamatric softmax
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— ‘
.. pregnancy
You are permitted to bring a|torch ® . o

A group of infections ... one of the|torch ®
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Why nonparametric softmax?

®

Y Dense vector space

PyTorch, you can use torch

... machine

Training contexts

10/10, would buy this|cheap P ®
Item delivered broken. Very|cheap
To check the version of PyTorch, you can use|torch

You are permitted to bring a|torch ® ¢ @

A group of infections ... one of the|torch ®

.. computer

... a group of infections ... torch
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New Retrieval-based LMs

Nonparametric-only, Phrase-level (NPM)

(If you can train the model...)

Min et al. 2023. Nonparametric Masked Language Modeling
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parametric-only, Phrase-level (NPM)

(If you can train the model...)
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Nonparametric-only, Phrase-level (NPM)

(If you can train the model...)

AN .)M\.?t. \\.\“& N BB R RIS
. TONMMNINGY \,\}\\_\\\\\_’\\\k \ N\

&&”\\Y} \x\% “\\
X %N\\&x\\

LRGN
5}%\“@“@&%&% N %\‘&"«?‘&\\\\x\\\ SRR

just as a jet of red light blasted from
Harry's ...

datastore Voldemort cried, Avada Kedavral” A
jet of green light issued ...

"The Boy Who Lived." He saw the
mouth move and a flash of green

light, and everything was gone.

. IS operated or driven by a jet of
water.

Pick up a flat rock; skip it across
Green River
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Nonparametric-only, Phrase-level (NPM)

(If you can train the model...)

just as a jet of red light . Is operated or driven by

g&géﬁf ‘\ﬁi\:fiiimi‘\ blasted from I—Iarry’s . Vector space a iet of water.
53%\@% &ﬁ%iﬁt\:&\i NN e 2
Voldemort cried,  Avada = 0t rock <kip i act
Kedavral" A jet of green : ckupd G?’ e;Orf?{isglE) L atross
light issued ... v

v/‘ Q
AN \

"The Boy Who Lived." He saw the
mouth move and a flash of green
light, and everything was gone.
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Nonparametric-only, Phrase-level (NPM)

(If you can train the model...)

just as a jet of red light ... Is operated or driven by
“;%é%\;‘;;m\ blasted from Harrys ... Vector space a |et of water.
) Qé&&;\\.\\\\\ '
Qx\m@&%%{k&%%\?&@&@@ |
Voldemort cried, " Avada . .
datastore Kedavral’ A jet of green Pick up a flat rock, skip it across
N S Green River
‘;%&%\\ X light issued ... -

-

"The Boy Who Lived." He saw the
mouth move and a flash of green
light, and everything was gone.

Harry felt Greenback collapse against him ... on the
floor as a jet of came flying toward him.
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Nonparametric-only, Phrase-level (NPM)

(If you can train the model...)

just as a jet of red light . Is operated or driven by

m&&;&\ blasted from Harry’s ... Vector space a iet of water.
O Qé\\s\m\\‘i\\\«\\g\“ ,
&\Sﬁiﬁxkﬁmﬁwﬁ
Voldemort cried, Avada . o
datastore Kedavra A jet of green Pick up a flat rock, skip it across
: i ohet o Green River
\} % % ‘\ \\\\\
@@@ light issued ... o

AN\

/"T;e Boy Who Lived." He saw the

mouth move and a flash of green
light, and everything was gone.

Harry felt Greenback collapse against him ... on the
floor as a jet of came flying toward him.

Voldemort cried, "Avada Kedavra!” A jet of green light issued ...

"The Boy Who Lived." ... a flash of green light and everything was gone.
Voldemort's wand just as a jet of red light blasted from Harry's
. IS operated or driven by a jet of water.
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New Retrieval-based LMs

NPM: Fact probing

T-REx Hard
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10 10! 102

Model size (relative to 354M)

No-retrieval LMs are better as they get larger

Min et al. 2023. Nonparametric Masked Language Modeling
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New Retrieval-based LMs

NPM: Fact probing

T-REx Hard

30 -
= 25" BM25+T5
3 Koo x
§20‘ /x
s /
S5 15 - _-%
5 %-
O T5 _. 4‘-"
= 10- ®--""" -

OPT g~
5_
10 10t 102

Model size (relative to 354M)

Retrieval augmentation helps

Min et al. 2023. Nonparametric Masked Language Modeling
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New Retrieval-based LMs

NPM: Fact probing

¢ NPV T-REx Hard
30 -
= 25" BM25+T5
3 B x
§20‘ /x
D e
S 15 I {
5 %-
© T5 _. /"
® 10- o e
OPT""
5_
10 10 102

Model size (relative to 354M)

NPM is more parameter efficient

Min et al. 2023. Nonparametric Masked Language Modeling
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New Retrieval-based LMs

NPM: Predicting rare entities

Min et al. 2023. Nonparametric Masked Language Modeling
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NPM: Predicting rare entities

45 T-REX 45 Google RE
BN GPT-3175B BN GPT-3175B
40 - 40 -
35 - 35 -
30 - 30 -
25 1 25 1
201 201
15 - 15 4
101 10 -
5 - 5
0 . . . . ol B —_— —_— .
0 1 2 3+ 0 1 2 3+
# BPE splits # BPE splits
—_—— - —
frequent rare frequent rare
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NPM: Predicting rare entities

T-REX Google RE
45 45
B GPT-3175B B GPT-3175B
401 m=w BM25+GPT-3 175B 401 m=w BM25+GPT-3 175B
35 - 35 -
30 - 30 -
25 - 25 -
20 - 20 -
15 - 15 A
10 | 10 |
5 A 5 -
0 ). _I B
0 1 2 3+ 0 1 2 3+
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_— -~
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New Retrieval-based LMs

45

40 A

35 -

30 -

25 -

20 -

15 ~

10 -

NPM: Predicting rare entities

T-REX 45 Google RE
BN GPT-3175B BN GPT-3175B
BM25+GPT-3 175B 40 1 BM25+GPT-3 175B
B NPM 354M 35 - B NPM 354M
30 1
25 -
20 -
15 ~
10 -
5 -
0- ;
0 1 2 3+ 0 1 2 3+
# BPE splits # BPE splits
—- —_
frequent rare frequent rare

NPM outperforms by a larger margin as the rarity increases

Min et al. 2023. Nonparametric Masked Language Modeling
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New Retrieval-based LMs: Overview

® New Methodology | — Designing a new lransformer

e New attention layers to incorporate more blocks (RETRO)

® Possibly combine with long-range Transformers

® New Methodology 2 — Designing a new Softmax
e Two softmaxes together: kKNN-LM

® Nonparametric softmax only, phrase-level: NPM

New Retrieval-based LMs
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New Retrieval-based LMs: Overview

* New Methodology | — Designing a new lransformer
e New attention layers to incorporate more blocks (RETRO)

® Possibly combine with long-range Transformers

® New Methodology 2 — Designing a new Softmax

® [wo softmaxes together: KNN-LM

e Nonparametric softmax only, phrase-level: NPM

® New LM Design — Mitigating fairness & legality issues

New Retrieval-based LMs — SILO
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New Retrieval-based LMs — SILO

Common practice

=2 W% % Fhuogoiiss RIOR \\\ NN \\ '\'\\\\x %‘* N

0 o
xm\\\ N RN AR
"\ %%% COMNINEINON 4§ LR T SRR S \\\@N\\“‘ N \g\f\k‘ ‘*\\\\“\"\\mk%k

. d ' \ : \\\ s \w % X
N §Q§\\\ N e \' R \&\Q.\ NN Q‘\S\\\\Q“\xm\}%g
N m\w\ DnNeaing g

\\S&‘ \@m\\\ \\“\‘W‘%\\\\’ SN O \‘}\ {&\&j\\:
\ \\\\&\\‘\\%M \\“\\\\ \\‘\\\\\;‘Q\l\\\\\‘\\\\ s

S
\\\\‘ %‘\\&\\X\\

NHERR \
“}g.\\\ \\\\\&\\\\‘\\\ ‘\5:\\\

\?‘0%\ \\ \?\\‘

Min et al. 2023. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore”
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Free Law
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Common practice

-
HACKER | |
NEWS ||

Permlsswely I|Censed v Copyrighted

New Retrieval-based LMs — SILO

A
Training

Min et al. 2023. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore”
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Free Law

Permlsswely I|Censeo|

New Retrieval-based LMs — SILO

i
[ '
“ "
-.-- £

? HACKER ||
| Iﬁumdnxrg :Aﬁ NEWS |}

Common practice

amazon

A
Training

& Legal risk in training on copyrighted data

Min et al. 2023. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore”
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Common practice

Free Law

- 1
[ 4
“ "
- |-- )

? HACKER ||
| Iﬁumdnxrg :Aﬁ NEWS |}

amazon

Permlsswely I|Censed Copyrighted Private
A
Training

. Legal risk in training on copyrighted data . Faillure in crediting to data creators

New Retrieval-based LMs — SILO Min et al. 2023. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore”
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New Retrieval-based LMs — SILO

P

New proposal: SILO

Free Law

mmm SA rECeR

Permissively-licensed

Min et al. 2023. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore”

94



New Retrieval-based LMs — SILO

New proposal: SILO

Free Law

ﬁ i, Very low legal risk,
15"“"’1“1’9 N ae NEWS ' but poor performance
(small-size data, domain shift)

Permissively-licensed

Training

Min et al. 2023. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore”
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New proposal: SILO

Free Law

ﬁ i, Very low legal risk,
15"“’”’1“1’9 N e NEWS ' but poor performance
o , (small-size data, domain shift)
Permissively-licensed

Significantly improve generalization Training

New Retrieval-based LMs — SILO

Min et al. 2023. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore”
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New proposal: SILO

Free Law

=|=.II-:KER Very low legal risk,
15"””’1“1'9 :4&& NEWS ‘ but poor performance
(small-size data, domain shift)

Permissively-licensed

Significantly improve generalization Training Can trace inherent attribution

Can modify the datastore at any time
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New proposal: SILO

Free Law

mmm ~3A retkeR

Permissively-licensed

Significantly improve generalization Training

* Likely defe
> Y +Provide co

New Retrieval-based LMs — SILO Min et al. 2023. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore”
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but poor performance

(small-size data, domain shift)

Can trace inherent attribution

Nse fair use
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* Allow credits (or payment) to data creators

Can modify the datastore at any time
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New proposal: SILO

Free Law
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Can trace inherent attribution
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New Retrieval-based LMs — SILO

S

LO Attribution Example

Test input:

include "./lib/admin.defines.php’;

include "./lib/admin.module.access.php’;
include “./lib/admin.smarty,php’”:

it (I has_right (

Continuation: [AC]X_BILLING)) { Header ...

Min et al. 2023. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore”

95



e L e

i ==== include"/

-4—-— | Include’./

P S include ‘../
=2 R R D R O

TLTOAITIIRE toininne: L e R, I NS NN
2 IR e
% Y : ) h % *
WA RO

N
R

New Retrieval-based LMs — SILO

SILO Attribution Example

Test input:

O/ ac

Ib/ac

AT
N
\i§§®~‘§v\\

b/ac
it (! has_right ( .

S5 O 3

Min et al. 2023

n.defines.php’;
n.module.access.php’;
n.smartyphp’

Continuation: [AC]X_BILLING)) { Header ...

. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore'
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SILO Attribution Example

Test input:
==-== Include./lib/ac
T —— include "./lib/admin.module.access.php’;
= include *./lib/admin.smarty,php’;

it (thas_right (, Continuation: [AC]X_BILLING)) { Header ...

n.defines.php’;

S5 O 3

| |

1
1
|
1
|
I
[ ]

}

; Top-1 retrieved token (in KNN-LM):
X *You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.

- L AT AR NN R R

. T8 N
) IRRRINRRRNR % B i N
) NIRRT, coninass \mmwwm
\ AR RN

\ NN
“IMERRN
ORI

N LR

NN

S

A\
RN RS
N W &\'} Q >
W“@\\% %lé
ERIEDR KRR
X
N

it (! has_right (
[ACTX_ACCESS)) { Header ...

New Retrieval-based LMs — SILO Min et al. 2023. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore' 95



SILO Attribution Example

Test input:
==-== Include./lib/ac
i——-— Include "./lib/admin.module.access.php;
= include *./lib/admin.smarty,php’;

it (thas_right (, Continuation: [AC]X_BILLING)) { Header ...

n.defines.php’;

S5 O 3

; Top-1 retrieved token (in KNN-LM):
X *You should have received a copy of the GNU Affero General Public License
* along with this program. It not, see <http://www.gnu.org/licenses/>.

- . A RN N6, — R R -
=D % Pheonass ‘\&&%ﬁ%&“@i@k\@\‘&&%
S R AR R W
%%‘%\&\MW m%\\ 5\&\\%\3&&\\\\@\3{@@1&@
LR R AN
U RN A N
=% 8 % B @ < A NR
AR . AR
% @ B % \k'\%\‘\\ \\%\:\ \
DN N
R

%

)
RN
R
sy e

&

%lé%l%/

it (! has_right (
[ACTX_ACCESS)) { Header ...

New Retrieval-based LMs — SILO Min et al. 2023. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore' 96



New Retrieval-based LMs: Summary

®* New Methodology | — Designing a new lransformer

e New attention layers to incorporate more blocks (RETRO)

® New Methodology 2 — Designing a new Softmax
® [wo softmaxes together: KNN-LM

e Nonparametric softmax only, phrase-level: NPM

* New LM Design — Mitigating fairness & legality issues

® [rain on permissive text — place copyrighted text into a datastore

New Retrieval-based LMs — SILO
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Overview

Why Retrieval-based LMs?

g Tell me about Meta Plattorm.

| don’t have any information about a
@ company called Meta Platforms. [t
IS possible that the company is ...

ChatGPT

New Retrieval-based LMs

— T —

... "Avada Kedavral” A jet of green light issued ...

.. move and a flash of green light and .
... just as a jet of red light blasted from Harry's

.. Is operated or driven by a jet of water.

Retrieval Augmentation
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v
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|
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Open Problems
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datastore
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Scaling datastore not just parameters?



What?

Summary

How?

Why?
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Summary

What? How? Why?
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Summary

What?
How?
Why?
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Summary

What? How? Why?
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Summary

What? How? Why?
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Summary

slide 45 |

B Test- 2017
| Test -2020

T5-Fine-tuned on 2017 data

M Train 2017, DS 2017
" Train 2017, DS 2020

61
45.75
30.5
15.25

Why?

New dimension In
improving LMs!

Update & scale without
additional training

103



Summary
Why?

slide 96 | New dimension in
improving LMs!

Test input:
: ====_ include ‘./lib/admin.defines.php’;
——-— Include ./lib/admin.module.access.php’;

=1 include/lib/adminsmartyphp’ Update & scale without
if (* has_right (. Continuation: [AC]X_BILLING)) { Header ... " )
additional training

Top-1 retrieved context:
*You should have received a copy of the GNU Affero General Public License

* along with this program. If not, see <http://www.gnu.org/licenses/>. D) I’OVI d e d a't a a't't r| b U't | on

**/
if (I has_right (
[ACTX_ACCESS)) { Header ...
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Test input:
include “./lib/admin.defines.php’;

include “./lib/admin.module.access.php’;
include “./lib/admin.smartyphp’;

if (! has_right (.

Summary

slide 96 |

Continuation: [AC]X_BILLING)) { Header ...

Top-1 retrieved context:
*You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.

**/
if (I has_right (
[ACTX_ACCESS)) { Header ...

Why?

New dimension In
improving LMs!

Update & scale without
additional training

Provide data attribution

New opportunities In
fairness & legality
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Provide data attribution

New opportunities In
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Open questions
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Open question: Scaling retrieval-based LMs



Open question: Scaling retrieval-based LMs

A small LM + a large datastore =~ a large (no-retrieval) LM?
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Open question: Scaling retrieval-based LMs

A small LM + a large datastore =~ a large (no-retrieval) LM?
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A new dimension In scaling!

Min et al. 2023. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore” 107



Open question: Scaling retrieval-based LMs

A small LM + a large datastore =~ a large (no-retrieval) LM?

&"‘%39&%\&&3“‘“‘\%%&%“\“\'\:&@\\\@@“\\“
RUTRESS R TR
AR TR T TR

DR \%&%&m‘%\\é\%&é@\ @\‘L\\\ R \
33 A R T TR T R
RO | “ﬁm\\.&m Q‘&_\?‘i&% m&&w§\\\§>

-

datastore

8 # of parameters # of tokens

N

A W, N
0 b“n» : J :(“’5‘ A é\h
NN 2 4D
Ry, - BRD ' N

i ' \?/{Q; f %ww Q%\W\:&\}y%%
P ®)/ N, N % &Jg’ﬁ\ N\ W

..............................................................................................................................................................................................................................................................
..............................................................................................................................................................................................................................................................
..............................................................................................................................................................................................................................................................

REPLUG (Shi et al., 2023)  <175B ~5B

108



Open question: Scaling retrieval-based LMs

A small LM + a large datastore =~ a large (no-retrieval) LM?
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Open question: Scaling retrieval-based LMs

Scaling law?
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Training loss

Open question: Scaling retrieval-based LMs
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Open question: Runtime efficiency

Efficiency of similarity search

Guo et al. 2020. “Accelerating Large-Scale Inference with Anisotropic Vector Quantization” 110



Open question: Runtime efficiency

Efficiency of similarity search

Measured on NVIDIA RTX 3090 GPU (Zhong et al., 2022)
with a FAISS indexer (Johnson et al., 2021) with 32 CPUs
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Efficiency of similarity search

Measured on NVIDIA RTX 3090 GPU (Zhong et al., 2022)
with a FAISS indexer (Johnson et al., 2021) with 32 CPUs
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Open question: Retrieval-based LMs for applications
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Open question: Retrieval-based LMs for applications
Open-ended text generation?
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Wang et al. 2023. "kNN-LM Does Not Improve Open-ended Text Generation” 111



Open question: Retrieval-based LMs for applications
Open-ended text generation?
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Better decoding algorithms?! Better adaptation methods!?

Wang et al. 2023. "kNN-LM Does Not Improve Open-ended Text Generation” 111



Open questions: Summary
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Q&A

Thank you for listening!

Check out ACL 2023 Tutorial on this topic (3-hour): https://acl2023-retrieval-Im.qgithub.io/
Please leave feedback at tinyurl.com/sewon-min-talk
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Extra slides (from QnA)



Validating Model Output to be Factual

Bridget Moynahan is an American actress, model and producer. She is best
known for her roles in Grey’'s Anatomy, |, Robot and Blue Bloods. She studied
acting at the American Academy of Dramatic Arts, and ...
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Min et al. 2023. “FActscore: Fine-grained Atomic Evaluation of Factual Precision in Long Form Text Generation”
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Accuracy
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There has been mixed results about whether retrieval hurts when it
comes to popular entities/facts, e.qg., the top graph shows it does hurt in
(short-form) question answering, and the bottom graph shows retrieval
ways help even with frequent entities in long-form text generation.
nese results are likely to depend on exact setup, e.g., the task, base
LMs, and datastore, etc.

Mallen et al. 2023. "When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories'
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Research on information retrieval

Pyserini

pypi v0.22.1 §| downloads 210k § downloads ' 1.8k/week | maven-central 'v0.22.1
Lucene v9.5.0 } license Apache

Retrieval —including training the encoder, getting embeddings and indexing—is an active area of research.
Recommend Pyserini (https://github.com/castorini/pyserini) for a set of references and also try some of
them out easily.
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® |f you want the

State-of-the-art retrieval-based LMs!?

model that you can use right now — retrieval-augmentation

® Partially because you can leverage the state-of-the-art models that industry built with no modification
® You should use state-of-the-art retrieval (BM25, Contriever or GTR) and state-of-the-art LM (LLAMA, ChatGPT)

® asiest: wi

® Doesn’t mean
exact same pa

th “independent training”, optionally with reranking
retrieval-augmentation is the “best” under the scenario of fair comparison, e.g., when the model has

rameters & Is trained on the exactly same data

® [he SILO paper shows KNN-LM (KNN in the graph) outperforms retrieval-augmentation (RiC in the graph), both

when training data==datastore (right) and when training data!=datastore (left)

® However, this is based on language modeling perplexity. Downstream task eval is still an open Q.
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